

Accredited by NAAC(Cycle–III) with 'A+' Grade (Recognized by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore)

#### **DEPARTMENT OF GRAPHIC & CREATIVE DESIGN AND DATA ANALYTICS**

### **COURSE NAME : COMPUTER SYSTEM ARCHITECTURE** (23UCU402)

I YEAR /I SEMESTER

**Unit II- Logic Gates** 

**Topic : 1's and 2'sComplements** 







### Complements

- Subtraction of numbers requires a different algorithm than addition.
- Adding a complement of a number is equivalent to subtraction.
- We will discuss two complements:
- ✓ Diminished Radix Complement
- ✓ Radix Complement
- Subtraction will be accomplished by adding a complement.





Given a number N in Base r having n digits, the (r-1)'s complement (called the Diminished Radix Complement) is defined as:

$$(rn - 1) - N$$

**Example:** 

- For r = 10,  $N = 1234_{10}$ , n = 4 (4 digits), we have:  $(rn - 1) = 10,000 - 1 = 9999_{10}$
- The 9's complement of  $1234_{10}$  is then:
  - $9999_{10} 1234_{10} = 8765_{10}$





### **Binary 1's Complement**

- $(rn - 1) = 256 - 1 = 255_{10}$  or  $1111111_2$
- The 1's complement of  $01110011_2$  is then:  $11111111_2$  $-01110011_{2}$  $10001100_2$ 
  - **NOTE:** Since the 2<sup>n</sup>-1 factor consists of all 1's and since 1 - 0 = 1 and 1 - 1 = 0, forming the one's complement consists of complementing each individual bit.





### **Radix Complement**

Given a number N in Base r having n digits, the r's complement (called the Radix Complement) is defined as:

$$rn - N \qquad \text{for } N \neq 0 \quad \text{an} \\ 0 \qquad \text{for } N = 0$$

Note that the Radix Complement is obtained by adding 1 to the Diminished Radix Complement.

#### **Example:**

- For r = 10,  $N = 1234_{10}$ , n = 4 (4 digits), we have:  $rn = 10,000_{10}$
- The 10's complement of  $1234_{10}$  is then  $10,000_{10} - 1234_{10} = 8766_{10}$  or 8765 + 1 (9's complement plus 1)



# nd



### **Binary 2's Complement**

- For r = 2,  $N = 01110011_2$ , n = 8 (8 digits), we have:
  - $(rn) = 256_{10}$  or  $10000000_2$
- The 2's complement of  $01110011_2$  is then:

 $100000000_2$  $-01110011_2$ 

### $10001101_2$

Note that this is the 1's complement plus 1.



### **Binary 2's Complement Examples**



### 

(The 2's complement of 0 is zero!)

- $\Leftarrow$  (could this be -1)?
- $\Leftarrow$  (could this be +1?)







### **Efficient 2's Complement**

### **Given:** an n-bit binary number: $a_{n-1}a_{n-2} \dots a_{i+1}10 \dots 00$

Where for some digit position i, aj is 1 and all digits to the right are 0, form the twos complement value this way:

Leave a equal to 1 (unchanged),

and

Leave rightmost digits 0 (unchanged),

and

complement all other digits to the left of aj. (0 replaces 1, 1 replaces 0)





### **Two's Complement Example**

### 01101011100011100000First 1 from right ↑---←--

### **Complement leftmost digits** $100101000\underline{11100}100000$ **↑**----**↑** Leave these

This  $\Rightarrow$  0110100111100 1001011000100becomes

This  $\Rightarrow$ becomes





Subtract two n-digit, <u>unsigned</u> numbers M – N, in base r as follows:

- **1.** Add the minuend M to the r's complement of the subtrahend N to perform:  $\mathbf{M} + (\mathbf{r}^{n} - \mathbf{N}) = \mathbf{M} - \mathbf{N} + \mathbf{r}^{n}$
- 2. If  $M \ge N$ , the sum will produce an end carry,  $r^n$  which is discarded; what is left is the result, M - N.
- 3. If M < N, the sum does not produce an end carry and is equal to  $r^n$  - (N - M), which is the r's complement of (N – **M**). To obtain the answer in a familiar form, take the r's complement of the sum and place a negative sign in front.





Example: Find 543 - 123 10 10

### 1). Form 10's complement of 123:

#### 2). Add the two:

### 3). Since $M \ge N$ , we discard the carry.



### 1000 - 123

#### 877

# 543(+) 877

#### 1420

#### **Ans: 420**



Example: Find 123 - 543 10 10

#### 1). Form 10's complement of 543:

#### 2). Add the two:

#### **3). Since M < N, form complement**

#### **Answer is (–)420.**



### 1000 - 543 457 123 (+) 457 **580** (no carry) 1000 (-) 580 **420**



### **Binary Example**

#### Compute: 1010100 - 1000011 1). Form 2's complement of 1000011:

### 2). Add the two:

### 3). Since $M \ge N$ , discard the carry. Ans. = 0010001



### 1000011 0111101

### 1010100 0111101

(+)

### 1 0010001 (a carry )



### **Another Binary Example**

### **Compute: 1000011 - 1010100**

### **1). Form 2's complement of 1010100:**

#### 2). Add the two:

(+)

3). Since M < N, complement the result.



### 1010100 0101100

### 1000011 0101100

### **1101111 (no carry)**

#### Ans. = (-) 0010001



### We can use addition of the 1's complement to subtract two numbers with a minor modification.

- Since (r-1)'s complement is one less than the r's complement, the result produces a sum which is one less than the correct sum when an end carry occurs.
- We can simply add in the end carry when it occurs to correct the answer.
- If the end carry does not occur, the result is negative and we can use the 1's complement to represent the negative result.







### **1's Complement Subtraction**

### **Use 1's complement to compute 1010100 - 1000011** 1000011 0111100 1010100 0111100 (+)**10010000 (a carry)** 0000001 (+)0010001 **Ans.** = 0010001

### 1). Form 1's complement of 1000011:

#### 2). Add the two:

### 3). Add carry, end around







### **1's Complement Subtraction**

### **Use 1's complement for computing 1000011 - 1010100 1). Form 1's complement of 1010100:**

#### 2). Add the two:

- **3). Form 1's complement:**
- 4). The answer has a negative sign.

(+)





## 1010100 0101011 1000011 0101011 **1101110 (no carry)** 0010001

### Ans. = (-) 0010001



- **Positive numbers and zero can be represented by unsigned** *n*digit, radix r numbers. <u>We need a representation for</u> negative numbers.
- To represent a sign (+ or -) we need exactly one more bit of information (1 binary digit gives  $2^1 = 2$  elements which is exactly what is needed).
- Since most computers use binary numbers, by convention, (and for convenience), the most significant bit is interpreted as a sign bit as shown below:

$$\mathbf{sa_{n-2} \dots a_2 a_1 a_0}$$

- ai

Where:

#### and



#### s = 0 for Positive numbers s = 1 for Negative numbers are 0 or 1



- Given n binary digits, the digit with weight 2(n-1) is the sign and the digits with weights 2(n-2) down to 2(0) can be used to represent 2(n-2)1) distinct elements.
- There are several ways to interpret the other digits. Here are three **popular choices:**
- **1.** Signed-Magnitude -- here the n-1 digits are interpreted as a positive magnitude.
- 2. Signed-Complement -- here the digits are interpreted as the rest of the complement of the number. There are two possibilities here:
  - **Signed One's Complement --2a.** (use the 1's Complement to compute)
  - **Signed Two's Complement --2b.** (use the 2's Complement to compute)







Example: Given r=2, n=3

### We have the following interpretations for signed integer representation:

| Number | Sign-Mag. | 1's Comp. | 2's Comp. |
|--------|-----------|-----------|-----------|
| +3     | 011       | 011       | 011       |
| +2     | 010       | 010       | 010       |
| +1     | 001       | 001       | 001       |
| +0     | 000       | 000       | 000       |
| -0     | 100       | 111       |           |
| -1     | 101       | 110       | 111       |
| -2     | 110       | 101       | 110       |
| -3     | 111       | 100       | 101       |
| -4     |           |           | 100       |





- Caution: If you use all *rn* possible combinations of *n* radix *r* digits, some operations on elements of the set will produce elements which will not be represented in the set.
- **Example:** Add unsigned, 3-bit integers 1012 to 1002 to get 10012 (5 + 4 = 9). This result cannot be represented in the set of 3-bit unsigned integers. An overflow is said to have occurred.







### **Addition:**

#### If signs are the same:

- **1. Add the magnitudes.**
- 2. Check for overflow (a carry into the sign bit).
- **3.** The sign of the result is the same.

### If the signs differ:

- **1.** Subtract the magnitude of the smaller from the magnitude of the larger.
- 2. Use the sign of the larger magnitude for the sign of the result.
- 3. Overflow will never occur.

### **Subtraction:**

**Complement the sign bit of the number you are subtracting and** follow the rules for addition.





### Same signs 000 + 001 = 001 (signs are the same) 010 + 010 = x00 (Overflow into sign bit) 101 + 101 = 110 (signs are the same) 110 + 110 = x00 (Overflow into sign bit) **Different signs** 001 + 110 = 101 (010 - 001, take - sign)111 + 010 = 101 (011 - 001, take - sign)101 + 010 = 001 (010 - 001, take + sign)100 + 000 = ?00 (is it + or - zero?)





### **Addition:**

- **1.** Add the numbers including the sign bits, discarding a carry out of the sign bits (2's Complement), or using an end-around carry (1's Complement).
- 2. If the sign bits were the same for both numbers and the sign of the result is different, an overflow has occurred.
- **3.** The sign of the result is computed in step 1.

#### **Subtraction:**

Form the complement of the number you are subtracting and follow the rules for addition.





### References

- 1.M.Morris Mano, "Computer System Architecture" 3<sup>rd</sup> Edition, Prentice Hall of India ,2000, ISBN-10: 0131663631
- 2. V.K. Puri, –DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175 , ISBN-13: 978-0074633175
- 3.William Stallings, "Computer Organization for Performance" PHI/ Pearson Education North Asia Ltd., 10th Designing Edition 2016, ISBN 978-0-13-410161-3 — ISBN 0-13-410161-8.

### **Thank You**

Complements-23UCU402-COMPUTER SYSTEM ARCHITECTURE /DR.P.SHIVARANJANI/GCD-DA/DRSNSRCAS



# and Architecture,