Accredited by NAAC(Cycle-III) with 'A+' Grade
(Recognized by UGC, Approved by AICTE, New Delhi and
Affiliated to Bharathiar University, Coimbatore)

DEPARTMENT OF GRAPHIC \& CREATIVE DESIGN AND DATA ANALYTICS

COURSE NAME : COMPUTER SYSTEM ARCHITECTURE (23UCU402)

I YEAR /I SEMESTER

Unit II- Logic Gates

Topic :1's and 2'sComplements

Complements

- Subtraction of numbers requires a different algorithm than addition.
- Adding a complement of a number is equivalent to subtraction.
- We will discuss two complements:
\checkmark Diminished Radix Complement
\checkmark Radix Complement
- Subtraction will be accomplished by adding a complement.

Diminished Radix Complement

Given a number N in Base r having n digits, the ($r-1$)'s complement (called the Diminished Radix Complement) is defined as:

$$
(r n-1)-N
$$

Example:

$$
\begin{aligned}
\text { For } r= & 10, N=1234_{10}, n=4 \text { (4 digits), we have: } \\
& (r n-1)=10,000-1=9999_{10}
\end{aligned}
$$

The 9 's complement of 1234_{10} is then:

$$
9999_{10}-1234_{10}=8765_{10}
$$

Binary 1's Complement

For $r=2, N=01110011_{2}, n=8$ (8 digits), we have:

$$
\left(r^{n}-1\right)=256-1=25510 \text { or } 11111111_{2}
$$

The 1 's complement of 01110011_{2} is then:
111111112
-01110011_{2}

10001100_{2}

NOTE: Since the $2^{\mathbf{n}_{-}} 1$ factor consists of all $1^{\prime \prime}$ s and since $1-0=1$ and $1-1=0$, forming the one's complement consists of complementing each individual bit.

Radix Complement

Given a number N in Base r having n digits, the r 's complement (called the Radix Complement) is defined as:

$$
\begin{aligned}
r n-N & \text { for } N \neq 0 \text { and } \\
0 & \text { for } N=0
\end{aligned}
$$

Note that the Radix Complement is obtained by adding 1 to the Diminished Radix Complement.

Example:
For $r=10, N=1234_{10}, n=4$ (4 digits), we have:

$$
r n=10,000_{10}
$$

The 10 's complement of $\mathbf{1 2 3 4}_{10}$ is then

$$
10,000_{10}-1234_{10}=8766_{10} \text { or } 8765+1(9 ' s \text { complement plus 1) }
$$

Binary 2's Complement

For $r=2, N=01110011_{2}, n=8$ (8 digits), we have:

$$
(r n)=256_{10} \text { or } 100000000_{2}
$$

The 2 's complement of 01110011_{2} is then:

$\mathbf{1 0 0 0 0 0 0 0 0}_{2}$

- 01110011_{2}

10001101_{2}

Note that this is the 1 's complement plus 1.

Binary 2's Complement Examples

100000000

11011100

00100100
100000000 00000000

00000000

100000000

- 11111111

00000001
(The 2 's complement of 0 is zero!)
$\Leftarrow($ could this be -1$)$?
$\Longleftarrow($ could this be +1 ? $)$

Efficient 2's Complement

Given: an n-bit binary number:

$$
\mathbf{a n}_{1-1} \mathbf{a n n}_{-2} \ldots \mathbf{a}_{\mathbf{i}+1} \mathbf{1 0} \ldots \underline{00}
$$

Where for some digit position i, a_{i} is 1 and all digits to the right are $\underline{0}$, form the twos complement value this way:

Leave ai equal to 1 (unchanged),
and
Leave rightmost digits 0 (unchanged),
and
complement all other digits to the left of ai.
(0 replaces 1,1 replaces 0)

Two's Complement Example

01101011100011100000

First 1 from right $\Uparrow--\Leftarrow--$
Complement leftmost digits
-

10010100011100100000

$\Uparrow----$ - Leave these
This $\Rightarrow \quad 0110100111100$
becomes 1001011000100
This $\Rightarrow \quad 10000000000000$
becomes 1000000000000

Subtraction with Radix Complements

Subtract two n-digit, unsigned numbers $\mathbf{M}-\mathbf{N}$, in base r as follows:

1. Add the minuend M to the r 's complement of the subtrahend \mathbf{N} to perform:

$$
\mathbf{M}+\left(\mathbf{r}^{\mathbf{n}}-\mathbf{N}\right)=\mathbf{M}-\mathbf{N}+\mathbf{r}^{\mathbf{n}}
$$

2. If $M \geq N$, the sum will produce an end carry, r^{n} which is discarded; what is left is the result, $M-N$.
3. If $M<N$, the sum does not produce an end carry and is equal to $\mathbf{r}^{\mathbf{n}}-(\mathbf{N}-\mathbf{M})$, which is the \mathbf{r} 's complement of ($\mathbf{N}-$ M). To obtain the answer in a familiar form, take the r's complement of the sum and place a negative sign in front.

Example: Find $54310{ }^{-123} 10$
1). Form 10's complement of 123:

1000

- 123

877
2). Add the two:

543
(+) 877

1420
3). Since $M \geq \mathbf{N}$, we discard the carry.

Example: Find $12310{ }^{-543} 10$
1). Form 10's complement of 543:

1000
-543
457
2). Add the two:

123
(+) 457
3). Since $M<\mathbf{N}$, form complement

Answer is (-)420.
420

Binary Example

Compute: 1010100-1000011
1). Form 2 's complement of 1000011:

1000011 0111101
2). Add the two:

1010100
0111101
(+) ------------
10010001 (a carry)
3). Since $M \geq \mathbf{N}$, discard the carry.

Ans. $=0010001$

Another Binary Example

Compute: 1000011-1010100
1). Form 2 's complement of 1010100 :

1010100
0101100
2). Add the two:

	1000011
	0101100
(+)	1101111

3). Since M < N, complement the result.

Ans. $=(-) 0010001$

We can use addition of the 1 's complement to subtract two numbers with a minor modification.

Since (r-1)'s complement is one less than the r's complement, the result produces a sum which is one less than the correct sum when an end carry occurs.

We can simply add in the end carry when it occurs to correct the answer.

If the end carry does not occur, the result is negative and we can use the 1 's complement to represent the negative result.

1's Complement Subtraction

Use 1 's complement to compute 1010100-1000011
1). Form 1 's complement of 1000011 : 1000011
0111100
2). Add the two:

1010100 0111100
(+)
10010000 (a carry)
3). Add carry, end around
(+) 0000001
0010001
Ans. $=0010001$

1's Complement Subtraction

Use 1 's complement for computing 1000011-1010100
1). Form 1 's complement of 1010100: $\begin{array}{ll}1010100 \\ & 0101011\end{array}$
2). Add the two:

1000011
0101011
(+) 1101110 (no carry)
3). Form 1's complement: 0010001
4). The answer has a negative sign.

$$
\text { Ans. }=(-) 0010001
$$

Signed Integers

Positive numbers and zero can be represented by unsigned n digit, radix r numbers. We need a representation for negative numbers.
To represent a sign (+ or -) we need exactly one more bit of information (1 binary digit gives $2^{1}=2$ elements which is exactly what is needed).
Since most computers use binary numbers, by convention, (and for convenience), the most significant bit is interpreted as a sign bit as shown below:

$$
\mathbf{s a n - 2} \ldots \mathbf{a}_{2} \mathbf{a}_{1} \mathbf{a}_{0}
$$

Where: and
$s=0$ for Positive numbers
$s=1$ for Negative numbers
ai are 0 or 1

Interpreting the Other Digits

Given n binary digits, the digit with weight $2(n-1)$ is the sign and the digits with weights $2(n-2)$ down to $2(0)$ can be used to represent $2(n-$ 1) distinct elements.

There are several ways to interpret the other digits. Here are three popular choices:

1. Signed-Magnitude -- here the $\mathbf{n - 1}$ digits are interpreted as a positive magnitude.
2. Signed-Complement -- here the digits are interpreted as the rest of the complement of the number. There are two possibilities here:

2a. Signed One's Complement -(use the 1's Complement to compute)
2b. Signed Two's Complement -(use the 2's Complement to compute)

Example: Given r=2, $\mathrm{n}=3$

We have the following interpretations for signed integer representation:

Number	Sign-Mag.	1's Comp.	2's Comp.
$+\mathbf{3}$	$\mathbf{0 1 1}$	$\mathbf{0 1 1}$	$\mathbf{0 1 1}$
+2	$\mathbf{0 1 0}$	$\mathbf{0 1 0}$	$\mathbf{0 1 0}$
$+\mathbf{0}$	$\mathbf{0 0 1}$	$\mathbf{0 0 1}$	$\mathbf{0 0 1}$
$\mathbf{+ 0}$	$\mathbf{0 0 0}$	$\mathbf{0 0 0}$	$\mathbf{0 0 0}$
$-\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 1}$	---
$-\mathbf{1}$	$\mathbf{1 0 1}$	$\mathbf{1 1 0}$	$\mathbf{1 1 1}$
$-\mathbf{2}$	$\mathbf{1 1 0}$	$\mathbf{1 0 1}$	$\mathbf{1 1 0}$
-3	$\mathbf{1 1 1}$	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$
-4	---	---	$\mathbf{1 0 0}$

Addition with Signed Numbers

Caution: If you use all r^{n} possible combinations of n radix r digits, some operations on elements of the set will produce elements which will not be represented in the set.

Example: Add unsigned, 3-bit integers 1012 to 1002 to get $10012(5+4=9)$. This result cannot be represented in the set of 3-bit unsigned integers. An overflow is said to have occurred.

Signed-Magnitude Arithmetic

Addition:

If signs are the same:

1. Add the magnitudes.
2. Check for overflow (a carry into the sign bit).
3. The sign of the result is the same.

If the signs differ:

1. Subtract the magnitude of the smaller from the magnitude of the larger.
2. Use the sign of the larger magnitude for the sign of the result.
3. Overflow will never occur.

Subtraction:
Complement the sign bit of the number you are subtracting and follow the rules for addition.

Sign-Magnitude Examples
Same signs

$$
\begin{aligned}
& 000+001=001 \quad \text { (signs are the same) } \\
& 010+010=x 00 \quad \text { (Overflow into sign bit) } \\
& 101+101=110 \text { (signs are the same) } \\
& 110+110=\mathbf{x 0 0} \text { (Overflow into sign bit) }
\end{aligned}
$$

Different signs

$$
\begin{aligned}
& 001+110=101(010-001, \text { take }- \text { sign }) \\
& 111+010=101(011-001, \text { take }- \text { sign }) \\
& 101+010=001(010-001, \text { take }+ \text { sign }) \\
& 100+000=? 00(\text { is it }+ \text { or }- \text { zero? })
\end{aligned}
$$

Signed-Complement Arithmetic

Addition:

1. Add the numbers including the sign bits, discarding a carry out of the sign bits (2 's Complement), or using an end-around carry (1 's Complement).
2. If the sign bits were the same for both numbers and the sign of the result is different, an overfiow has occurred.
3. The sign of the result is computed in step 1.

Subtraction:

Form the complement of the number you are subtracting and follow the rules for addition.

References

1.M.Morris Mano, "Computer System Architecture" $3^{\text {rd }}$ Edition, Prentice Hall of India ,2000, ISBN-10: 0131663631
2. V.K. Puri, —DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175 , ISBN-13: 9780074633175
3.William Stallings, "Computer Organization and Architecture, Designing for Performance" PHI/ Pearson Education North Asia Ltd., 10th Edition 2016, ISBN 978-0-13-410161-3 — ISBN 0-13-410161-8.

Thank You

